

Python Dockerflow

This package implements a few helpers and tools for Mozilla’s
Dockerflow pattern [https://github.com/mozilla-services/Dockerflow].
The documentation can be found on python-dockerflow.readthedocs.io [https://python-dockerflow.readthedocs.io/]

[image: _images/code%2520style-black-000000.svg]
 [https://github.com/ambv/black][image: GitHub Actions]
 [https://github.com/mozilla-services/python-dockerflow/actions][image: Codecov]
 [https://codecov.io/github/mozilla-services/python-dockerflow?branch=main][image: Documentation Status]
 [https://python-dockerflow.readthedocs.io/en/latest/?badge=latest][image: CalVer - Timely Software Versioning]
 [https://calver.org/]
Installation

Please install the package using your favorite package installer:

pip install dockerflow

Issues & questions

See the issue tracker on GitHub [https://github.com/mozilla-services/python-dockerflow/issues]
to open tickets if you have issues or questions about python-dockerflow.

Dockerflow?

You may be asking ‘What is Dockerflow [https://github.com/mozilla-services/Dockerflow]?’

Here’s what it’s documentation says:

Dockerflow is a specification for automated building, testing and
publishing of docker web application images that comply to a common
set of behaviours. Compliant images are simpler to deploy, monitor
and manage in production.

Features

	environment
	Accept its configuration through environment variables.
See: Django, Flask, Sanic

	port
	Listen on environment variable $PORT for HTTP requests.
See: Django, Flask, Sanic

	version
	Must have a JSON version object at /app/version.json.
See: Django, Flask, Sanic

	health
	
	Respond to /__version__ with the contents of /app/version.json

	Respond to /__heartbeat__ with a HTTP 200 or 5xx on error.
This should check backing services like a database for connectivity

	Respond to /__lbheartbeat__ with an HTTP 200.
This is for load balancer checks and should not check backing services.

See: Django, Flask, Sanic

	logging
	Send text logs to stdout or stderr. See:
Generic, Django,
Flask, Sanic

	static content
	Serve its own static content. See:
Django, Flask, Flask

Contents

	Development
	Setup

	Run tests

	Release

	Authors

	Changelog
	2024.1.0

	2023.8.0

	2022.8.0 (2022-08-18)

	2022.7.0 (2022-07-12)

	2022.1.0 (2022-01-31)

	Logging
	Configuration

	Django
	Setup

	Configuration

	PORT

	Versions

	Health monitoring

	Logging

	Static content

	Settings

	Flask
	Setup

	Configuration

	PORT

	Versions

	Health monitoring

	Logging

	Static content

	Sanic
	Setup

	Configuration

	PORT

	Versions

	Health monitoring

	Logging

	Static content

	API
	Django

	Flask

	Logging

	Sanic

	Version

Indices and tables

	Index

	Module Index

	Search Page

Development

Setup

Requirements

	tox [https://tox.wiki]

	Redis [https://redis.io/]

Run tests

Run a local Redis:

docker run redis -p 6379:6379

Run the test suite:

tox -v

For a specific framework or version (see tox.ini for available environments):

tox -e py311-fl22

Pass arguments to pytest using the -- delimiter:

tox -e py311-fl22 -- -x tests/flask/test_flask.py

Release

	Update the changelog in docs/changelog.rst

	Tag using Calver [https://calver.org/]

	Push tag to Github

	Create release entry in repository

A Github Action will be triggered and publish the package to Pypi.

Authors

	Peter Bengtsson (@peterbe)

	Graham Beckley (@grahamalama)

	Mike Cooper (@mythmon)

	Will Kahn-Greene (@willkg)

	Michael Kelly (@Osmose)

	Jannis Leidel (@jezdez)

	Mathieu Leplatre (@leplatrem)

	Les Orchard (@lmorchard)

	Mathieu Pillard (@diox)

Changelog

2024.1.0

	Log checks messages in heartbeat view (#86)

	Adjust supported framework versions, add support for Python 3.11 (#76)

	Centralize check registration / running logic (#85)

2023.8.0

	Add support for Django 4.2

	Drop support for Sanic 20

	Drop support for Flask 0.12, 1.0, and 1.1

	Add support for Python 3.11

2022.8.0 (2022-08-18)

	Add support for Sanic 21 and 22, with aioredis 2.x

	Add support for Django 4.1

	Add support for Flask 2.2

2022.7.0 (2022-07-12)

	Django: Remove default_app_config, deprecated in Django 3.2 and removed in 4.1

	Add support for Python 3.10

	Add support for Flask 2.0 and 2.1

	Explicitly support Flask 1.0 and 1.1 (Flask 1.1 was previously tested as 1.0)

	Drop support for Python 3.6

	Drop support for Django 2.2, 3.0, and 3.1

	Drop support for Flask 0.11

	Drop support for Sanic 19

	Target Black formatting to Python 3.7 to 3.10, drop 2.7

2022.1.0 (2022-01-31)

	Sanic: Limit sanic_redis to 0.3.0 or earlier, since later versions require
aioredis 2.x

	Django: Support for 4.0

2021.7.0 (2021-07-07)

	Do not expose details in Django heartbeat by default

	Limit aioredis to version 1.X

	Drop support for Python 2.7!

	Drop support for Django 1.11, 2.0 and 2.1!

	Move to GitHub Actions: https://github.com/mozilla-services/python-dockerflow/actions

2020.10.0 (2020-10-05)

	Add support for Sanic 20.3.0 and up

	Add public flask.g.request_id when not set

2020.6.0 (2020-06-09)

	Set heartbeat fail level to checks.ERROR

2019.10.0 (2019-10-28)

	Add Python 3.8 support.

	Fix a regression in the JSON logger parameter signature introduced in
version 2018.2.1.

	Fixed some test harness issues, e.g. broken version contraint on the
Django 2.2 tests.

	Speed up tests by only installing framework dependencies when needed.

2019.9.0 (2019-09-26)

	Make JsonLogFormatter easier to extend

	Blacken and isorted source code.

2019.6.0 (2019-06-25)

	Add support for Sanic 19.

	Add support for Python 3.7 and Django 2.1 and 2.2.

	Drop support for Python 3.4 and 3.5 and Django 1.8, 1.9, 1.10 and 2.0.

	Match Django urlpatterns with trailing slash.

	Use black for code formatting.

2019.5.0 (2019-05-13)

	Gracefully handle user loading to prevent accidental race condtions during
exception handling when using the Flask Dockerflow extension.

2018.4.0 (2018-04-03)

	Fix backward-compatibility in the check_migrations_applied Flask check
when an older version of Flask-Migrate is used.

2018.2.1 (2018-02-24)

	Fixes the instantiation of the JsonLogFormatter logging formatter
on Python 3 when using the logging module’s ability to be configured
with ConfigParser ini files.

	Extend the documentation for custom checks and reorganized it a bit.

2018.2.0 (2018-02-20)

	Adds Flask support. See the documentation for more information.

	Extends the documentation about defining custom health checks.

	Refactored some of the health monitoring code that existed for
the Django support.

	Fixed an embarrassing typo about the default logger name when
using the JsonLogFormatter logging formatter, changed it
TestPilot to Dockerflow.

	Extends the testing matrix to include Django 2.0.

	Make sure the the combination of Python and Django versions
match the official recommendation as defined at
https://docs.djangoproject.com/en/2.0/faq/install/#what-python-version-can-i-use-with-django.

2017.11.0 (2017-11-16)

	Fixed name of mozlog message field from “message” to “msg” as
specified in https://wiki.mozilla.org/Firefox/Services/Logging.
Thanks @leplatrem!

2017.5.0 (2017-05-31)

	Improve logging documentation, thanks @willkg.

	Speed up timestamp calculation, thanks @peterbe.

	Make user id calculation compatible with
Django >= 1.10.

2017.4.0 (2017-04-09)

	Ensure log formatter doesn’t fail with non json-serializable parameters. Thanks @diox!

2017.1.1 (2017-01-25)

	Fixed PyPI deploy via Travis (added whl files).

2017.1.0 (2017-01-25)

	Replaced custom URL patterns in the Django support with new
DockerflowMiddleware that also takes care of the “request.summary”
logging.

	Added Python 3.6 to test harness.

	Fixed Flake8 tests.

2016.11.0 (2016-11-18)

	Added initial implementation for Django health checks based on Normandy
and ATMO code. Many thanks to Mike Cooper for inspiration and majority of
implementation.

	Added logging formatter and request.summary populating middleware,
from the mozilla-cloud-services-logger project that was originally
written by Les Orchard. Many thanks for the permission to re-use that
code.

	Added documentation:

https://python-dockerflow.readthedocs.io/

	Added Travis continous testing:

https://travis-ci.org/mozilla-serviers/python-dockerflow

Logging

python-dockerflow provides a JsonLogFormatter
Python logging formatter that produces messages following the JSON schema
for a common application logging format defined by the illustrious
Mozilla Cloud Services group.

See also

For more information see the API documentation for the
dockerflow.logging module.

Configuration

There a different ways to configure Python logging, please refer to the
logging [https://docs.python.org/3/library/logging.html#module-logging] documentation to learn more.

The following examples should be considered excerpts and won’t be enough
for your application to work. They only illustrate how to use the
JSON logging formatter for a specific logger.

Dictionary based

A simple example configuration for a myproject logger could look like
this:

import logging.config

cfg = {
 'version': 1,
 'formatters': {
 'json': {
 '()': 'dockerflow.logging.JsonLogFormatter',
 'logger_name': 'myproject'
 }
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'json'
 },
 },
 'loggers': {
 'myproject': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
 }
}

logging.config.dictConfig(cfg)
logger = logging.getLogger('myproject')
logger.info('I am logging in mozlog format now! woo hoo!')

In this example, we set up a logger for myproject (you’d replace that with
your project name) which has a single handler named console which uses the
mozlog formatter to output log event data to stdout.

ConfigParser ini file based

Consider an ini file with the following content that does the same
thing as the dictionary based configuratio above:

logging.ini

 [loggers]
 keys = root, myproject

 [handlers]
 keys = console

 [formatters]
 keys = json

 [logger_root]
 level = INFO
 handlers = console

 [logger_myproject]
 level = DEBUG
 handlers = console
 qualname = myproject

 [handler_console]
 class = StreamHandler
 level = DEBUG
 args = (sys.stdout,)
 formatter = json

 [formatter_json]
 class = dockerflow.logging.JsonLogFormatter

Then load the ini file using the logging [https://docs.python.org/3/library/logging.html#module-logging] module function
logging.config.fileConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig]:

myproject.py

 logging.config.fileConfig('logging.ini')
 logger = logging.getLogger('myproject')
 logger.info('I am logging in mozlog format now! woo hoo!')

Django

The package dockerflow.django package implements various tools to support
Django projects that want to follow the Dockerflow specs:

	A Python logging formatter following the mozlog [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md] format to be used in
the LOGGING setting.

	A middleware to emit request.summary [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md#application-request-summary-type-requestsummary] log records based on request specific
data.

	Views for health monitoring:

	/__version__ - Serves a version.json file

	/__heartbeat__ - Run Django checks as configured
in the DOCKERFLOW_CHECKS setting

	/__lbheartbeat__ - Retuns a HTTP 200 response

	Signals for passed and failed heartbeats.

See also

For more information see the API documentation for
the dockerflow.django module.

Setup

To install python-dockerflow’s Django support please follow these steps:

	Add dockerflow.django to your INSTALLED_APPS setting

	Define a BASE_DIR setting that is the root path of your Django project.
This will be used to locate the version.json file that is generated by
CircleCI or another process during deployment.

See also

Versions for more information

	Add the DockerflowMiddleware to your MIDDLEWARE_CLASSES or
MIDDLEWARE setting:

MIDDLEWARE_CLASSES = (
 # ...
 'dockerflow.django.middleware.DockerflowMiddleware',
 # ...
)

	Configure logging to use the
JsonLogFormatter
logging formatter for the request.summary logger (you may have to
extend your existing logging configuration!).

Configuration

Accept its configuration through environment variables.

There are several options to handle configuration values through
environment variables, e.g. as shown in the configuration grid [https://djangopackages.org/grids/g/configuration/] on
djangopackages.com.

os.environ

The simplest is to use Python’s os.environ object to access
environment variables for settings and other variables, e.g.:

MY_SETTING = os.environ.get('DJANGO_MY_SETTING', 'default value')

The downside of that is that it nicely works only for string
based variables, since that’s what os.environ returns.

python-decouple

A good replacement is python-decouple [https://pypi.python.org/pypi/python-decouple] as it’s agnostic to the
framework in use and offers casting the returned value to the type
wanted, e.g.:

from decouple import config

MY_SETTING = config('DJANGO_MY_SETTING', default='default value')
DEBUG = config('DJANGO_DEBUG', default=False, cast=bool)

As you can see the DEBUG setting would be populated from the
DJANGO_DEBUG environment variable but also be cast as a boolean
(while considering the string values '1', 'yes', 'true' and
'on' as truthy values, and similar for falsey values).

django-environ

Django-environ [https://django-environ.readthedocs.io/] follows similar patterns as python-decouple but implements
specific casters for typical Django settings. E.g.:

import environ
env = environ.Env()

MY_SETTING = env.str('DJANGO_MY_SETTING', default='default value')
DEBUG = env.bool('DJANGO_DEBUG', default=False)
DATABASES = {
 'default': env.db(), # automatically looks for DATABASE_URL
}

django-configurations

If you’re interested in even more complex scenarios there are
tools like django-configurations [https://django-configurations.readthedocs.io/] which allows loading different sets
of settings depending on an additional environment variable
DJANGO_CONFIGURATION to separate settings by environment
(e.g. dev, stage, prod). It also ships with Value classes that
implement configuration parsing from environment variable and casting,
e.g.:

from configurations import Configuration, values

class Dev(Configuration):
 SESSION_COOKIE_SECURE = False
 DEBUG = values.BooleanValue(default=False)

class Prod(Dev):
 SESSION_COOKIE_SECURE = True

In that example the configuration class that is given in the
DJANGO_CONFIGURATION environment variable would be used as the base
for Django’s settings.

PORT

Listen on environment variable $PORT for HTTP requests.

Depending on which WSGI server you are using to run your Python application
there are different ways to accept the PORT as the port to launch
your application with.

It’s recommended to use port 8000 by default.

Gunicorn

Gunicorn automatically will bind to the hostname:port combination of
0.0.0.0:$PORT if it find the PORT environment variable.
That means running gunicorn is as simple as using this:

gunicorn myproject.wsgi:application --workers 4 --access-logfile -

See also

The full gunicorn documentation [http://docs.gunicorn.org/]
for more details.

uWSGI

For uWSGI all you have to do is to bind on the PORT when you
define the uwsgi.ini, e.g.:

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
module = myproject.wsgi:application
chdir = /app
enable-threads = True

See also

The full uWSGI documentation [http://uwsgi-docs.readthedocs.io/]
for more details.

Versions

Must have a JSON version object at /app/version.json.

Dockerflow requires writing a version object [https://github.com/mozilla-services/Dockerflow/blob/main/docs/version_object.md] to the file /app/version.json
as seen from the docker container to be served under the URL path
/__version__.

To facilitate this python-dockerflow contains a Django view to read the
file under path BASE_DIR + 'version.json' where
BASE_DIR is required to be defined in the Django project settings, e.g.:

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Assuming that the settings.py file is contained in the project folder
That means the BASE_DIR setting will be the one where the manage.py
file is located in the below example directory tree:

 .
 ├── .dockerignore
 ├── .gitignore
 ├── Dockerfile
 ├── README.rst
 ├── circle.yml
 ├── manage.py
 ├── requirements.txt
 ├── staticfiles
 │ └── ..
 ├── tests
 │ └── ..
 ├── version.json
 ├── myproject
 │ ├── app1
 │ │ ├── ..
 │ │ └── ..
 │ ├── app2
 │ │ ├── ..
 │ │ └── ..
 │ ├── settings.py
 │ └── urls.py
 └── ..

Health monitoring

Health monitoring happens via three different views following the Dockerflow [https://github.com/mozilla-services/Dockerflow]
spec:

	
GET /__version__

	The view that serves the version information.

Example request:

GET /__version__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

{
 "commit": "52ce614fbf99540a1bf6228e36be6cef63b4d73b",
 "version": "2017.11.0",
 "source": "https://github.com/mozilla/telemetry-analysis-service",
 "build": "https://circleci.com/gh/mozilla/telemetry-analysis-service/2223"
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – a version.json wasn’t found

	
GET /__heartbeat__

	The heartbeat view will go through the list of configured Dockerflow
checks in the DOCKERFLOW_CHECKS setting, run each check, and, if
settings.DEBUG is True, add their results to a JSON response.

The view will return HTTP responses with either a status code of 200 if
all checks ran successfully or 500 if there was one or more warnings or
errors returned by the checks.

Custom Dockerflow checks:

To write your own custom Dockerflow checks, please follow the documentation
about Django's system check framework [http://docs.djangoproject.com/en/stable/topics/checks/#module-django.core.checks] and
particularly the section “Writing your own checks”.

Note

Don’t forget to add the check additionally to the
DOCKERFLOW_CHECKS setting once you’ve added it to your
code.

Example request:

GET /__heartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Vary: Accept-Encoding
Content-Type: application/json

{
 "status": "warning",
 "checks": {
 "check_debug": "ok",
 "check_sts_preload": "warning"
 },
 "details": {
 "check_sts_preload": {
 "status": "warning",
 "level": 30,
 "messages": {
 "security.W021": "You have not set the SECURE_HSTS_PRELOAD setting to True. Without this, your site cannot be submitted to the browser preload list."
 }
 }
 }
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – there was a warning or error

	
GET /__lbheartbeat__

	The view that simply returns a successful HTTP response so that a load
balancer in front of the application can check that the web application
has started up.

Example request:

GET /__lbheartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

Logging

Dockerflow provides a JsonLogFormatter Python
logging formatter class.

To use it, put something like this in your Django settings file and
configure at least the request.summary logger that way:

LOGGING = {
 'version': 1,
 'formatters': {
 'json': {
 '()': 'dockerflow.logging.JsonLogFormatter',
 'logger_name': 'myproject'
 }
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'json'
 },
 },
 'loggers': {
 'request.summary': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
 }
}

Static content

To properly serve static content it’s recommended to use Whitenoise [https://whitenoise.readthedocs.io/].
It contains a middleware that is able to serve files that were built by
Django’s collectstatic management command (e.g. including bundle files
built by django-pipeline) with far-future headers and proper response
headers for the AWS CDN to work.

To enable Whitenoise, please install it from PyPI and then enable it
in your Django projet:

	Set your STATIC_ROOT setting:

STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')

	Add the middleware to your MIDDLEWARE (or MIDDLEWARE_CLASSES) setting:

MIDDLEWARE_CLASSES = [
 # 'django.middleware.security.SecurityMiddleware',
 'whitenoise.middleware.WhiteNoiseMiddleware',
 # ...
]

Make sure to follow the SecurityMiddleware.

	Enable the staticfiles [https://docs.djangoproject.com/en/stable/howto/static-files/] storage that is able to compress files during
collection and ship them with far-future headers:

STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'

	Install brotlipy [http://brotlipy.readthedocs.org/en/latest/] so the storage can generate compressed files of your
static files in the brotli [https://en.wikipedia.org/wiki/Brotli] format.

For more configuration options and details how to use Whitenoise see
the section about Using WhiteNoise with Django [https://whitenoise.readthedocs.io/en/stable/django.html] in its documentation.

Settings

DOCKERFLOW_VERSION_CALLBACK

The dotted import path for the callable that
returns the content to return under /__version__.

Defaults to 'dockerflow.version.get_version' which will be passed the
BASE_DIR setting by default.

DOCKERFLOW_CHECKS

A list of dotted import paths to register during
Django setup, to be used in the rendering of the /__heartbeat__ view.
Defaults to:

DOCKERFLOW_CHECKS = [
 'dockerflow.django.checks.check_database_connected',
 'dockerflow.django.checks.check_migrations_applied',
]

Flask

The package dockerflow.flask package implements various tools to support
Flask based projects that want to follow the Dockerflow specs:

	A Python logging formatter following the mozlog [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md] format.

	A Flask extension implements:

	Emitting of request.summary [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md#application-request-summary-type-requestsummary] log records based on request specific data.

	Views for health monitoring:

	/__version__ - Serves a version.json file

	/__heartbeat__ - Runs the configured Dockerflow checks

	/__lbheartbeat__ - Retuns a HTTP 200 response

	Signals for passed and failed heartbeats.

	Built-in Dockerflow checks for SQLAlchemy and Redis connections
and validating Alembic migrations.

	Hooks to add custom Dockerflow checks.

	Adds request_id to the flask.g [https://flask.palletsprojects.com/en/1.1.x/api/#flask.g] application namespace when it isn’t already set

See also

For more information see the API documentation for
the dockerflow.flask module.

Setup

To install python-dockerflow’s Flask support please follow these steps:

	In your code where your Flask application lives set up the dockerflow Flask
extension:

from flask import Flask
from dockerflow.flask import Dockerflow

app = Flask(__name__)
dockerflow = Dockerflow(app)

	Make sure the app root path is set correctly as this will be used
to locate the version.json file that is generated by
CircleCI or another process during deployment.

See also

Versions for more information

	Configure logging to use the JsonLogFormatter logging formatter for the
request.summary logger (you may have to extend your existing logging
configuration), see Logging for more information.

Configuration

Accept its configuration through environment variables.

There are several options to handle configuration values through
environment variables when configuring Flask.

os.environ

The simplest is to use Python’s os.environ object to access
environment variables for settings and other variables, e.g.:

MY_SETTING = os.environ.get('FLASK_MY_SETTING', 'default value')

The downside of that is that it nicely works only for string
based variables, since that’s what os.environ returns.

python-decouple

A good replacement is python-decouple [https://pypi.python.org/pypi/python-decouple] as it’s agnostic to the
framework in use and offers casting the returned value to the type
wanted, e.g.:

from decouple import config

MY_SETTING = config('FLASK_MY_SETTING', default='default value')
DEBUG = config('FLASK_DEBUG', default=False, cast=bool)

As you can see the DEBUG configuration value would be populated from
the FLASK_DEBUG environment variable but also be cast as a boolean
(while considering the string values '1', 'yes', 'true' and
'on' as truthy values, and similar for falsey values).

flask-environ

flask-environ [https://github.com/uniphil/flask-environ] follows similar patterns as python-decouple but implements
specific casters for typical Flask configuration values. E.g.:

from flask import Flask
from flask_environ import get, collect, word_for_true

app = Flask(__name__)

app.config.update(collect(
 get('DEBUG', default=False, convert=word_for_true),
 get('HOST', default='127.0.0.1'),
 get('PORT', default=5000, convert=int),
 get('SECRET_KEY',
 'SQLALCHEMY_DATABASE_URI',
 'TWITTER_CONSUMER_KEY',
 'TWITTER_CONSUMER_SECRET',
),
))

Flask-Env

If you need to solve more complex configuration scenarios
there are tools like Flask-Env [https://github.com/brettlangdon/flask-env] which allows loading settings for different
environments (e.g. dev, stage, prod) via environment variables. It provides
a small Python meta class to allow setting up the configuration values:

E.g. in a config.py file next to your application:

from flask_env import MetaFlaskEnv

class Dev(metaclass=MetaFlaskEnv):
 DEBUG = True
 PORT = 5000

class Prod(Dev):
 DEBUG = False

Then in your application code:

import os
from flask import Flask

app = Flask(__name__)
app.config.from_object(os.environ.get('FLASK_CONFIG', 'config.Dev'))

In that example the configuration class that is given in the
FLASK_CONFIG environment variable would be used to update
the default Flask configuration values while allowing to override
the values via environment variables.

It’s recommended to use the Flask-Env feature to define a prefix for the
environment variable it uses to check, e.g.:

from flask_env import MetaFlaskEnv

class Dev(metaclass=MetaFlaskEnv):
 ENV_PREFIX = 'ACME_'
 DEBUG = True

To override the config value of DEBUG the environment variable would be
called ACME_DEBUG.

PORT

Listen on environment variable $PORT for HTTP requests.

Depending on which WSGI server you are using to run your Python application
there are different ways to accept the PORT as the port to launch
your application with.

It’s recommended to use port 8000 by default.

Gunicorn

Gunicorn automatically will bind to the hostname:port combination of
0.0.0.0:$PORT if it find the PORT environment variable.
That means running gunicorn is as simple as using this, for example:

gunicorn myproject:app --workers 4

See also

The full gunicorn documentation [http://docs.gunicorn.org/]
for more details.

uWSGI

For uWSGI all you have to do is to bind on the PORT when you
define the uwsgi.ini, e.g.:

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
module = myproject:app
chdir = /app
enable-threads = True

See also

The full uWSGI documentation [http://uwsgi-docs.readthedocs.io/]
for more details.

Versions

Must have a JSON version object at /app/version.json.

Dockerflow requires writing a version object [https://github.com/mozilla-services/Dockerflow/blob/main/docs/version_object.md] to the file
/app/version.json as seen from the docker container to be served under
the URL path /__version__.

To facilitate this python-dockerflow comes with a Flask view to read the
file under path the parent directory of the Flask app root. See the
Flask API docs for more information about the
app root path.

If you’d like to override the location from which the view is reading the
version.json file from, simply override the optional version_path
parameter to the Dockerflow class, e.g.:

from flask import Flask
from dockerflow.flask import Dockerflow

app = Flask(__name__)
dockerflow = Dockerflow(app, version_path='/app')

Alternatively if you’d like to completely override the way the version
information is read use the
version_callback() decorator to
decorate a callback that gets the version_path value passed. E.g.:

import json
from flask import Flask
from dockerflow.flask import Dockerflow

app = Flask(__name__)
dockerflow = Dockerflow(app)

@dockerflow.version_callback
def my_version(root):
 return json.loads(os.path.join(root, 'acme_version.json'))

Health monitoring

Health monitoring happens via three different views following the Dockerflow [https://github.com/mozilla-services/Dockerflow]
spec:

	
GET /__version__

	The view that serves the version information.

Example request:

GET /__version__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

{
 "commit": "52ce614fbf99540a1bf6228e36be6cef63b4d73b",
 "version": "2017.11.0",
 "source": "https://github.com/mozilla/telemetry-analysis-service",
 "build": "https://circleci.com/gh/mozilla/telemetry-analysis-service/2223"
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – a version.json wasn’t found

	
GET /__heartbeat__

	The heartbeat view will go through the list of registered Dockerflow
checks, run each check and add their results to a JSON response.

The view will return HTTP responses with either an status code of 200 if
all checks ran successfully or 500 if there was one or more warnings or
errors returned by the checks.

Built-in Dockerflow checks:

There are a few built-in checks that are automatically added to the list
of checks if the appropriate Flask extension objects are passed to
the Dockerflow class during instantiation.

For detailed examples please see the API documentation for the built-in
Flask Dockerflow checks.

Custom Dockerflow checks:

To write your own custom Dockerflow checks simply write a function
that returns a list of one or many check message instances representing
the severity of the check result. The dockerflow.flask.checks
module contains a series of predefined check messages for the
severity levels: Debug,
Info,
Warning,
Error,
Critical.

Here’s an example of a check that handles various levels of exceptions
from an external storage system with different check message:

from dockerflow.flask import checks, Dockerflow

app = Flask(__name__)
dockerflow = Dockerflow(app)

@dockerflow.check
def storage_reachable():
 result = []
 try:
 acme.storage.ping()
 except SlowConnectionException as exc:
 result.append(checks.Warning(exc.msg, id='acme.health.0002'))
 except StorageException as exc:
 result.append(checks.Error(exc.msg, id='acme.health.0001'))
 return result

Notice the use of the check()
decorator to mark the check to be used.

Example request:

GET /__heartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Vary: Accept-Encoding
Content-Type: application/json

{
 "status": "warning",
 "checks": {
 "check_debug": "ok",
 "check_sts_preload": "warning"
 },
 "details": {
 "check_sts_preload": {
 "status": "warning",
 "level": 30,
 "messages": {
 "security.W021": "You have not set the SECURE_HSTS_PRELOAD setting to True. Without this, your site cannot be submitted to the browser preload list."
 }
 }
 }
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – there was a warning or error

	
GET /__lbheartbeat__

	The view that simply returns a successful HTTP response so that a load
balancer in front of the application can check that the web application
has started up.

Example request:

GET /__lbheartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

Logging

Dockerflow provides a JsonLogFormatter Python
logging formatter class.

To use it, put something like this BEFORE your Flask app is initialized
for at least the request.summary logger:

from logging.conf import dictConfig

dictConfig({
 'version': 1,
 'formatters': {
 'json': {
 '()': 'dockerflow.logging.JsonLogFormatter',
 'logger_name': 'myproject'
 }
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'json'
 },
 },
 'loggers': {
 'request.summary': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
 }
})

Static content

To properly serve static content it’s recommended to use Whitenoise [https://whitenoise.readthedocs.io/].
It contains a WSGI middleware that is able to serve the files that
Flask usually serves under the static URL path (Flask app parameter
static_url_path) from the Flask app’s static folder (static_folder)
but with far-future headers and proper response headers for the CDNs.

For more information see the documentation dedicated to using
Whitenoise with Flask [https://whitenoise.readthedocs.io/en/stable/flask.html].

Another great adition (especially if no JavaScript based build system is
used like webpack) is using Flask-Assets [https://flask-assets.readthedocs.io/], a Flask extension based on the
webassets [https://webassets.readthedocs.io/] management tool. Since it also uses the Flask app’s static
folder as the output directory by default both work well together.

Sanic

The package dockerflow.sanic package implements various tools to support
Sanic based projects that want to follow the Dockerflow specs:

	A Python logging formatter following the mozlog [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md] format.

	A Sanic extension implements:

	Emitting of request.summary [https://github.com/mozilla-services/Dockerflow/blob/main/docs/mozlog.md#application-request-summary-type-requestsummary] log records based on request specific data.

	Views for health monitoring:

	/__version__ - Serves a version.json file

	/__heartbeat__ - Runs the configured Dockerflow checks

	/__lbheartbeat__ - Retuns a HTTP 200 response

	Signals for passed and failed heartbeats.

	Built-in Dockerflow checks for SQLAlchemy and Redis connections
and validating Alembic migrations.

	Hooks to add custom Dockerflow checks.

See also

For more information see the API documentation for
the dockerflow.sanic module.

Setup

To install python-dockerflow’s Sanic support please follow these steps:

	In your code where your Sanic application lives set up the dockerflow Sanic
extension:

from sanic import Sanic
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
dockerflow = Dockerflow(app)

	Make sure the app root path is set correctly as this will be used
to locate the version.json file that is generated by
CircleCI or another process during deployment.

See also

Versions for more information

	Configure logging to use the JsonLogFormatter logging formatter for the
request.summary logger (you may have to extend your existing logging
configuration), see Logging for more information.

Configuration

Accept its configuration through environment variables.

There are several options to handle configuration values through
environment variables when configuring Sanic.

Sanic configuration

The simplest is to use Sanic’s own ability to access environment variables
for settings and other variables.

Any variables defined with the SANIC_ prefix will be applied to the
sanic config. For example, setting SANIC_REQUEST_TIMEOUT will be
loaded by the application automatically and fed into the
REQUEST_TIMEOUT config variable.

—Sanic docs on configuration [https://sanic.dev/en/guide/deployment/configuration.html#environment-variables].

The downside of that is that it nicely works only for string
based variables, since that’s what os.environ returns.

python-decouple

A good replacement is python-decouple [https://pypi.python.org/pypi/python-decouple] as it’s agnostic to the
framework in use and offers casting the returned value to the type
wanted, e.g.:

from decouple import config

MY_SETTING = config('SANIC_MY_SETTING', default='default value')
DEBUG = config('SANIC_DEBUG', default=False, cast=bool)

As you can see the DEBUG configuration value would be populated from
the SANIC_DEBUG environment variable but also be cast as a boolean
(while considering the string values '1', 'yes', 'true' and
'on' as truthy values, and similar for falsey values).

sanic-envconfig

If you need to solve more complex configuration scenarios there are tools
like sanic-envconfig [https://github.com/jamesstidard/sanic-envconfig] which allows loading settings for different
environments (e.g. dev, stage, prod) via environment variables.
It provides a small Python base class to allow setting up the configuration
values:

E.g. in a config.py file next to your application:

from sanic_envconfig import EnvConfig

class Dev(EnvConfig):
 DEBUG: bool = True
 DB_URL: str = None
 WORKERS: int = 1
 PORT: int = 5000

class Prod(Dev):
 DEBUG: bool = False

Then in your application code:

import os
from sanic import Sanic

app = Sanic(__name__)
app.config.from_object(os.environ.get('SANIC_CONFIG', 'config.Dev'))

In that example the configuration class that is given in the
SANIC_CONFIG environment variable would be used to update
the default Sanic configuration values while allowing to override
the values via environment variables.

It’s recommended to use the sanic-envconfig feature to define a prefix for the
environment variable it uses to check, e.g.:

from sanic_envconfig import EnvConfig

class Dev(EnvConfig):
 _ENV_PREFIX = 'ACME_'
 DEBUG = True

To override the config value of DEBUG the environment variable would be
called ACME_DEBUG.

PORT

Listen on environment variable $PORT for HTTP requests.

Depending on which WSGI server you are using to run your Python application
there are different ways to accept the PORT as the port to launch
your application with.

It’s recommended to use port 8000 by default.

Gunicorn

Gunicorn automatically will bind to the hostname:port combination of
0.0.0.0:$PORT if it find the PORT environment variable.
That means running gunicorn is as simple as using this, for example:

gunicorn myproject:app --worker-class sanic.worker.GunicornWorker

See also

The full gunicorn documentation [http://docs.gunicorn.org/]
for more details.

ASGI

Sanic is also ASGI-compliant. This means you can use your preferred ASGI
webserver to run Sanic. The three main implementations of ASGI are Daphne,
Uvicorn, and Hypercorn.

See also

The Sanic deployment documentation [https://sanic.dev/en/guide/deployment/running.html#asgi] has more details.

Versions

Must have a JSON version object at /app/version.json.

Dockerflow requires writing a version object [https://github.com/mozilla-services/Dockerflow/blob/main/docs/version_object.md] to the file
/app/version.json as seen from the docker container to be served under
the URL path /__version__.

To facilitate this python-dockerflow comes with a Sanic view to read the
file under the current worked directory (.).

If you’d like to override the location from which the view is reading the
version.json file from, simply override the optional version_path
parameter to the Dockerflow class, e.g.:

from sanic import Sanic
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
dockerflow = Dockerflow(app, version_path='/app')

Alternatively if you’d like to completely override the way the version
information is read use the
version_callback() decorator to
decorate a callback that gets the version_path value passed. E.g.:

import json
from sanic import Sanic
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
dockerflow = Dockerflow(app)

@dockerflow.version_callback
def my_version(root):
 return json.loads(os.path.join(root, 'acme_version.json'))

Health monitoring

Health monitoring happens via three different views following the Dockerflow [https://github.com/mozilla-services/Dockerflow]
spec:

	
GET /__version__

	The view that serves the version information.

Example request:

GET /__version__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

{
 "commit": "52ce614fbf99540a1bf6228e36be6cef63b4d73b",
 "version": "2017.11.0",
 "source": "https://github.com/mozilla/telemetry-analysis-service",
 "build": "https://circleci.com/gh/mozilla/telemetry-analysis-service/2223"
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – a version.json wasn’t found

	
GET /__heartbeat__

	The heartbeat view will go through the list of registered Dockerflow
checks, run each check and add their results to a JSON response.

The view will return HTTP responses with either an status code of 200 if
all checks ran successfully or 500 if there was one or more warnings or
errors returned by the checks.

Built-in Dockerflow checks:

There are a few built-in checks that are automatically added to the list
of checks if the appropriate Sanic extension objects are passed to
the Dockerflow class during instantiation.

For detailed examples please see the API documentation for the built-in
Sanic Dockerflow checks.

Custom Dockerflow checks:

To write your own custom Dockerflow checks simply write a function
that returns a list of one or many check message instances representing
the severity of the check result. The dockerflow.sanic.checks
module contains a series of predefined check messages for the
severity levels: Debug,
Info,
Warning,
Error,
Critical.

Here’s an example of a check that handles various levels of exceptions
from an external storage system with different check message:

 from sanic import Sanic
 from dockerflow.sanic import checks, Dockerflow

 app = Sanic(__name__)
 dockerflow = Dockerflow(app)

 @dockerflow.check
 async def storage_reachable():
 result = []
 try:
 acme.storage.ping()
 except SlowConnectionException as exc:
 result.append(checks.Warning(exc.msg, id='acme.health.0002'))
 except StorageException as exc:
 result.append(checks.Error(exc.msg, id='acme.health.0001'))
 return result

also works without async::

 @dockerflow.check
 def storage_reachable():
 result = []
 # ...

Notice the use of the check()
decorator to mark the check to be used.

Example request:

GET /__heartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 500 Internal Server Error
Vary: Accept-Encoding
Content-Type: application/json

{
 "status": "warning",
 "checks": {
 "check_debug": "ok",
 "check_sts_preload": "warning"
 },
 "details": {
 "check_sts_preload": {
 "status": "warning",
 "level": 30,
 "messages": {
 "security.W021": "You have not set the SECURE_HSTS_PRELOAD setting to True. Without this, your site cannot be submitted to the browser preload list."
 }
 }
 }
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – there was a warning or error

	
GET /__lbheartbeat__

	The view that simply returns a successful HTTP response so that a load
balancer in front of the application can check that the web application
has started up.

Example request:

GET /__lbheartbeat__ HTTP/1.1
Host: example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

Logging

Dockerflow provides a JsonLogFormatter Python
logging formatter class.

To use it, pass something like this to your Sanic app when it is initialized
for at least the request.summary logger:

from sanic import Sanic

log_config = {
 'version': 1,
 'formatters': {
 'json': {
 '()': 'dockerflow.logging.JsonLogFormatter',
 'logger_name': 'myproject'
 }
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'json'
 },
 },
 'loggers': {
 'request.summary': {
 'handlers': ['console'],
 'level': 'DEBUG',
 },
 }
})

sanic = Sanic(__name__, log_config=log)

By default the log_info parameter has the value of
sanic.log.LOGGING_CONFIG_DEFAULTS.

Alternatively you can also pass the same logging config dictionary to the
logging.conf.dictConfig utility BEFORE your Sanic app is initialized:

from logging.conf import dictConfig
from sanic import Sanic

log_config = {
 # ...
}

dictConfig(log_config)

sanic = Sanic(__name__)

Static content

Please refer to the Sanic documentation about serving static files [https://sanic.dev/en/guide/basics/routing.html#static-files] for more
information.

API

This section shows more details about the following code paths available in
python-dockerflow:

	Django
	Checks

	Signals

	Views

	Flask
	Extension

	Checks

	Signals

	Logging
	JsonLogFormatter

	SafeJSONEncoder

	safer_format_traceback()

	Sanic
	Extension

	Checks

	Version
	get_version()

Django

This documents the code that allows Django integration.

Checks

The provided checks hook into Django’s system check framework [https://docs.djangoproject.com/en/stable/ref/checks/] to enable
the heartbeat view to diagnose
the current health of the Django project.

	
dockerflow.django.checks.check_database_connected(app_configs, **kwargs)

	A Django check to see if connecting to the configured default
database backend succeeds.

	
dockerflow.django.checks.check_migrations_applied(app_configs, **kwargs)

	A Django check to see if all migrations have been applied correctly.

	
dockerflow.django.checks.check_redis_connected(app_configs, **kwargs)

	A Django check to connect to the default redis connection
using django_redis.get_redis_connection and see if Redis
responds to a PING command.

Signals

During the rendering of the /__heartbeat__ Django view two signals are
being sent to hook into the result of the checks:

	
dockerflow.django.signals.heartbeat_passed

	The signal that is sent when the heartbeat checks pass successfully.

	
dockerflow.django.signals.heartbeat_failed

	The signal that is sent when the heartbeat checks raise either a
warning or worse (error, critical)

Both signals receive an additional level parameter that indicates the
maximum check level that failed during the rendering.

E.g. to hook into those signals to send data to statsd, do this:

from django.dispatch import receiver
from dockerflow.django.signals import heartbeat_passed, heartbeat_failed
from statsd.defaults.django import statsd

@receiver(heartbeat_passed)
def heartbeat_passed_handler(sender, level, **kwargs):
 statsd.incr('heartbeat.pass')

@receiver(heartbeat_failed)
def heartbeat_failed_handler(sender, level, **kwargs):
 statsd.incr('heartbeat.fail')

Views

dockerflow.django implements various views so the automatic application
monitoring can happen. They are mounted by including them in the root of a
URL configration:

urlpatterns = [
 url(r'^', include('dockerflow.django.urls', namespace='dockerflow')),
 # ...
]

	
dockerflow.django.views.heartbeat(request)

	Runs all the Django checks and returns a JsonResponse with either
a status code of 200 or 500 depending on the results of the checks.

Any check that returns a warning or worse (error, critical) will
return a 500 response.

	
dockerflow.django.views.lbheartbeat(request)

	Let the load balancer know the application is running and available
must return 200 (not 204) for ELB
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html

	
dockerflow.django.views.version(request)

	Returns the contents of version.json or a 404.

Flask

This documents the various Flask specific functionality but doesn’t cover
internals of the extension.

Extension

	
class dockerflow.flask.app.Dockerflow(app=None, db=None, redis=None, migrate=None, silenced_checks=None, version_path=None, *args, **kwargs)

	The Dockerflow Flask extension. Set it up like this:

myproject.py

from flask import Flask
from dockerflow.flask import Dockerflow

app = Flask(__name__)
dockerflow = Dockerflow(app)

Or if you use the Flask application factory pattern, in
an own module set up Dockerflow first:

myproject/deployment.py

from dockerflow.flask import Dockerflow

dockerflow = Dockerflow()

and then import and initialize it with the Flask application
object when you create the application:

myproject/app.py

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 from myproject.deployment import dockerflow
 dockerflow.init_app(app)

 from myproject.views.admin import admin
 from myproject.views.frontend import frontend
 app.register_blueprint(admin)
 app.register_blueprint(frontend)

 return app

See the parameters for a more detailed list of optional features when
initializing the extension.

	Parameters:

	
	app (Flask [https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask] or None) – The Flask app that this Dockerflow extension should be
initialized with.

	db – A Flask-SQLAlchemy extension instance to be used by the
built-in Dockerflow check for the database connection.

	redis – A Redis connection to be used by the built-in Dockerflow
check for the Redis connection.

	migrate – A Flask-Migrate extension instance to be used by the
built-in Dockerflow check for Alembic migrations.

	silenced_checks (list [https://docs.python.org/3/library/stdtypes.html#list]) – Dockerflow check IDs to ignore when running
through the list of configured checks.

	version_path – The filesystem path where the version.json can
be found. Defaults to the parent directory of the
Flask app’s root path.

	
check(func=None, name=None)

	Backwards compatibility method.

	
property checks

	Backwards compatibility alias.

	
init_app(app)

	Initializes the extension with the given app, registers the
built-in views with an own blueprint and hooks up our signal
callbacks.

	
init_check(check, obj)

	Backwards compatibility method.

	
summary_extra()

	Build the extra data for the summary logger.

	
user_id()

	Return the ID of the current request’s user

	
version_callback(func)

	A decorator to optionally register a new Dockerflow version callback
and use that instead of the default of
dockerflow.version.get_version().

The callback will be passed the value of the
version_path parameter to the Dockerflow extension object,
which defaults to the parent directory of the Flask app’s root path.

The callback should return a dictionary with the
version information as defined in the Dockerflow spec,
or None if no version information could be loaded.

E.g.:

app = Flask(__name__)
dockerflow = Dockerflow(app)

@dockerflow.version_callback
def my_version(root):
 return json.loads(os.path.join(root, 'acme_version.json'))

	
exception dockerflow.flask.app.HeartbeatFailure(description: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, response: Response | None [https://docs.python.org/3/library/constants.html#None] = None, original_exception: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] | None [https://docs.python.org/3/library/constants.html#None] = None)

	

Checks

	
dockerflow.flask.checks.check_database_connected(db)

	A built-in check to see if connecting to the configured default
database backend succeeds.

It’s automatically added to the list of Dockerflow checks if a
SQLAlchemy [https://flask-sqlalchemy.palletsprojects.com/en/2.x/api/#flask_sqlalchemy.SQLAlchemy] object is passed
to the Dockerflow class during
instantiation, e.g.:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from dockerflow.flask import Dockerflow

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

dockerflow = Dockerflow(app, db=db)

	
dockerflow.flask.checks.check_migrations_applied(migrate)

	A built-in check to see if all migrations have been applied correctly.

It’s automatically added to the list of Dockerflow checks if a
flask_migrate.Migrate [https://flask-migrate.readthedocs.io/] object
is passed to the Dockerflow class during
instantiation, e.g.:

from flask import Flask
from flask_migrate import Migrate
from flask_sqlalchemy import SQLAlchemy
from dockerflow.flask import Dockerflow

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)
migrate = Migrate(app, db)

dockerflow = Dockerflow(app, db=db, migrate=migrate)

	
dockerflow.flask.checks.check_redis_connected(client)

	A built-in check to connect to Redis using the given client and see
if it responds to the PING command.

It’s automatically added to the list of Dockerflow checks if a
StrictRedis instances is passed
to the Dockerflow class during
instantiation, e.g.:

import redis
from flask import Flask
from dockerflow.flask import Dockerflow

app = Flask(__name__)
redis_client = redis.StrictRedis(host='localhost', port=6379, db=0)

dockerflow = Dockerflow(app, redis=redis)

An alternative approach to instantiating a Redis client directly
would be using the Flask-Redis [https://github.com/underyx/flask-redis]
Flask extension:

from flask import Flask
from flask_redis import FlaskRedis
from dockerflow.flask import Dockerflow

app = Flask(__name__)
app.config['REDIS_URL'] = 'redis://:password@localhost:6379/0'
redis_store = FlaskRedis(app)

dockerflow = Dockerflow(app, redis=redis_store)

Signals

During the rendering of the /__heartbeat__ Flask view two signals are
being sent to hook into the result of the checks:

	
dockerflow.flask.signals.heartbeat_passed

	The signal that is sent when the heartbeat checks pass successfully.

	
dockerflow.flask.signals.heartbeat_failed

	The signal that is sent when the heartbeat checks raise either a
warning or worse (error, critical)

Both signals receive an additional level parameter that indicates the
maximum check level that failed during the rendering.

E.g. to hook into those signals to send data to statsd, do this:

from dockerflow.flask.signals import heartbeat_passed, heartbeat_failed
from myproject.stats import statsd

@heartbeat_passed.connect_via(app)
def heartbeat_passed_handler(sender, level, **extra):
 statsd.incr('heartbeat.pass')

@heartbeat_failed.connect_via(app)
def heartbeat_failed_handler(sender, level, **extra):
 statsd.incr('heartbeat.fail')

Logging

Generic tools for Python logging integration.

	
class dockerflow.logging.JsonLogFormatter(fmt=None, datefmt=None, style='%', logger_name='Dockerflow')

	Log formatter that outputs machine-readable json.

This log formatter outputs JSON format messages that are compatible with
Mozilla’s standard heka-based log aggregation infrastructure.

See also

	https://wiki.mozilla.org/Firefox/Services/Logging

Adapted from:
https://github.com/mozilla-services/mozservices/blob/master/mozsvc/util.py#L106

	
convert_record(record)

	Convert a Python LogRecord attribute into a dict that follows MozLog
application logging standard.

	from - https://docs.python.org/3/library/logging.html#logrecord-attributes

	to - https://wiki.mozilla.org/Firefox/Services/Logging

	
format(record)

	Format a Python LogRecord into a JSON string following MozLog
application logging standard.

	
is_value_jsonlike(value)

	Return True if the value looks like JSON. Use only on strings.

	
class dockerflow.logging.SafeJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	
	
default(o)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
dockerflow.logging.safer_format_traceback(exc_typ, exc_val, exc_tb)

	Format an exception traceback into safer string.
We don’t want to let users write arbitrary data into our logfiles,
which could happen if they e.g. managed to trigger a ValueError with
a carefully-crafted payload. This function formats the traceback
using “%r” for the actual exception data, which passes it through repr()
so that any special chars are safely escaped.

Sanic

This documents the various Sanic specific functionality but doesn’t cover
internals of the extension.

Extension

	
class dockerflow.sanic.app.Dockerflow(app=None, redis=None, silenced_checks=None, version_path='.', *args, **kwargs)

	The Dockerflow Sanic extension. Set it up like this:

myproject.py

from sanic import Sanic
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
dockerflow = Dockerflow(app)

Or if you use the Sanic application factory pattern, in
an own module set up Dockerflow first:

myproject/deployment.py

from dockerflow.sanic import Dockerflow

dockerflow = Dockerflow()

and then import and initialize it with the Sanic application
object when you create the application:

myproject/app.py

def create_app(config_filename):
 app = Sanic(__name__)
 app.config.from_pyfile(config_filename)

 from myproject.deployment import dockerflow
 dockerflow.init_app(app)

 from myproject.views.admin import admin
 from myproject.views.frontend import frontend
 app.register_blueprint(admin)
 app.register_blueprint(frontend)

 return app

See the parameters for a more detailed list of optional features when
initializing the extension.

	Parameters:

	
	app (Sanic or None) – The Sanic app that this Dockerflow extension should be
initialized with.

	redis – A SanicRedis instance to be used by the built-in Dockerflow
check for the sanic_redis connection.

	silenced_checks (list [https://docs.python.org/3/library/stdtypes.html#list]) – Dockerflow check IDs to ignore when running
through the list of configured checks.

	version_path – The filesystem path where the version.json can
be found. Defaults to ..

	
check(func=None, name=None)

	Backwards compatibility method.

	
property checks

	Backwards compatibility alias.

	
init_app(app)

	Add the Dockerflow views and middleware to app.

	
init_check(check, obj)

	Backwards compatibility method.

	
summary_extra(request)

	Build the extra data for the summary logger.

	
version_callback(func)

	A decorator to optionally register a new Dockerflow version callback
and use that instead of the default of
dockerflow.version.get_version().

The callback will be passed the value of the
version_path parameter to the Dockerflow extension object,
which defaults to the parent directory of the Sanic app’s root path.

The callback should return a dictionary with the
version information as defined in the Dockerflow spec,
or None if no version information could be loaded.

E.g.:

import aiofiles

app = Sanic(__name__)
dockerflow = Dockerflow(app)

@dockerflow.version_callback
async def my_version(root):
 path = os.path.join(root, 'acme_version.json')
 async with aiofiles.open(path, mode='r') as f:
 raw = await f.read()
 return json.loads(raw)

Checks

	
async dockerflow.sanic.checks.check_redis_connected(redis_client)

	A built-in check to connect to Redis using the given client and see
if it responds to the PING command.

It’s automatically added to the list of Dockerflow checks if a
SanicRedis instance is passed
to the Dockerflow class during
instantiation, e.g.:

import redis as redislib
from sanic import Sanic
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
redis = redislib.from_url("redis://:password@localhost:6379/0")
dockerflow = Dockerflow(app, redis=redis)

An alternative approach to instantiating a Redis client directly
would be using the Sanic-Redis [https://github.com/strahe/sanic-redis]
Sanic extension:

from sanic import Sanic
from sanic_redis import SanicRedis
from dockerflow.sanic import Dockerflow

app = Sanic(__name__)
app.config['REDIS'] = {'address': 'redis://:password@localhost:6379/0'}
redis = SanicRedis(app)
dockerflow = Dockerflow(app, redis=redis)

Version

Generic tools for version information.

	
dockerflow.version.get_version(root)

	Load and return the contents of version.json.

	Parameters:

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The root path that the version.json file will be opened

	Returns:

	Content of version.json or None

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or None

 HTTP Routing Table

 /__heartbeat__ |
 /__lbheartbeat__ |
 /__version__

 		 	

 		
 /__heartbeat__	

 	
 	
 GET /__heartbeat__	

 		 	

 		
 /__lbheartbeat__	

 	
 	
 GET /__lbheartbeat__	

 		 	

 		
 /__version__	

 	
 	
 GET /__version__	

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dockerflow	

 	
 	
 dockerflow.django.checks	

 	
 	
 dockerflow.django.signals	

 	
 	
 dockerflow.django.views	

 	
 	
 dockerflow.flask.app	

 	
 	
 dockerflow.flask.signals	

 	
 	
 dockerflow.logging	

 	
 	
 dockerflow.sanic.app	

 	
 	
 dockerflow.version	

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | P
 | S
 | U
 | V

C

 	
 	check() (dockerflow.flask.app.Dockerflow method)

 	(dockerflow.sanic.app.Dockerflow method)

 	check_database_connected() (in module dockerflow.django.checks)

 	(in module dockerflow.flask.checks)

 	check_migrations_applied() (in module dockerflow.django.checks)

 	(in module dockerflow.flask.checks)

 	
 	check_redis_connected() (in module dockerflow.django.checks)

 	(in module dockerflow.flask.checks)

 	(in module dockerflow.sanic.checks)

 	checks (dockerflow.flask.app.Dockerflow property)

 	(dockerflow.sanic.app.Dockerflow property)

 	convert_record() (dockerflow.logging.JsonLogFormatter method)

D

 	
 	default() (dockerflow.logging.SafeJSONEncoder method)

 	Dockerflow (class in dockerflow.flask.app)

 	(class in dockerflow.sanic.app)

 	
 dockerflow.django.checks

 	module

 	
 dockerflow.django.signals

 	module

 	dockerflow.django.signals.heartbeat_failed (in module dockerflow.django.signals)

 	dockerflow.django.signals.heartbeat_passed (in module dockerflow.django.signals)

 	
 dockerflow.django.views

 	module

 	
 	
 dockerflow.flask.app

 	module

 	
 dockerflow.flask.signals

 	module

 	dockerflow.flask.signals.heartbeat_failed (in module dockerflow.flask.signals)

 	dockerflow.flask.signals.heartbeat_passed (in module dockerflow.flask.signals)

 	
 dockerflow.logging

 	module

 	
 dockerflow.sanic.app

 	module

 	
 dockerflow.version

 	module

E

 	
 	environment

 	
 	
 environment variable

 	PORT, [1], [2], [3], [4], [5], [6], [7]

F

 	
 	format() (dockerflow.logging.JsonLogFormatter method)

G

 	
 	get_version() (in module dockerflow.version)

H

 	
 	health

 	
 	heartbeat() (in module dockerflow.django.views)

 	HeartbeatFailure

I

 	
 	init_app() (dockerflow.flask.app.Dockerflow method)

 	(dockerflow.sanic.app.Dockerflow method)

 	
 	init_check() (dockerflow.flask.app.Dockerflow method)

 	(dockerflow.sanic.app.Dockerflow method)

 	is_value_jsonlike() (dockerflow.logging.JsonLogFormatter method)

J

 	
 	JsonLogFormatter (class in dockerflow.logging)

L

 	
 	lbheartbeat() (in module dockerflow.django.views)

 	
 	logging

M

 	
 	
 module

 	dockerflow.django.checks

 	dockerflow.django.signals

 	dockerflow.django.views

 	dockerflow.flask.app

 	dockerflow.flask.signals

 	dockerflow.logging

 	dockerflow.sanic.app

 	dockerflow.version

P

 	
 	PORT, [1], [2], [3], [4], [5], [6], [7]

 	
 	port

S

 	
 	SafeJSONEncoder (class in dockerflow.logging)

 	safer_format_traceback() (in module dockerflow.logging)

 	
 	static content

 	summary_extra() (dockerflow.flask.app.Dockerflow method)

 	(dockerflow.sanic.app.Dockerflow method)

U

 	
 	user_id() (dockerflow.flask.app.Dockerflow method)

V

 	
 	version

 	version() (in module dockerflow.django.views)

 	
 	version_callback() (dockerflow.flask.app.Dockerflow method)

 	(dockerflow.sanic.app.Dockerflow method)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Python Dockerflow

 		
 Development

 		
 Setup

 		
 Run tests

 		
 Release

 		
 Authors

 		
 Changelog

 		
 2024.1.0

 		
 2023.8.0

 		
 2022.8.0 (2022-08-18)

 		
 2022.7.0 (2022-07-12)

 		
 2022.1.0 (2022-01-31)

 		
 2021.7.0 (2021-07-07)

 		
 2020.10.0 (2020-10-05)

 		
 2020.6.0 (2020-06-09)

 		
 2019.10.0 (2019-10-28)

 		
 2019.9.0 (2019-09-26)

 		
 2019.6.0 (2019-06-25)

 		
 2019.5.0 (2019-05-13)

 		
 2018.4.0 (2018-04-03)

 		
 2018.2.1 (2018-02-24)

 		
 2018.2.0 (2018-02-20)

 		
 2017.11.0 (2017-11-16)

 		
 2017.5.0 (2017-05-31)

 		
 2017.4.0 (2017-04-09)

 		
 2017.1.1 (2017-01-25)

 		
 2017.1.0 (2017-01-25)

 		
 2016.11.0 (2016-11-18)

 		
 Logging

 		
 Configuration

 		
 Dictionary based

 		
 ConfigParser ini file based

 		
 Django

 		
 Setup

 		
 Configuration

 		
 os.environ

 		
 python-decouple

 		
 django-environ

 		
 django-configurations

 		
 PORT

 		
 Gunicorn

 		
 uWSGI

 		
 Versions

 		
 Health monitoring

 		
 Logging

 		
 Static content

 		
 Settings

 		
 DOCKERFLOW_VERSION_CALLBACK

 		
 DOCKERFLOW_CHECKS

 		
 Flask

 		
 Setup

 		
 Configuration

 		
 os.environ

 		
 python-decouple

 		
 flask-environ

 		
 Flask-Env

 		
 PORT

 		
 Gunicorn

 		
 uWSGI

 		
 Versions

 		
 Health monitoring

 		
 Logging

 		
 Static content

 		
 Sanic

 		
 Setup

 		
 Configuration

 		
 Sanic configuration

 		
 python-decouple

 		
 sanic-envconfig

 		
 PORT

 		
 Gunicorn

 		
 ASGI

 		
 Versions

 		
 Health monitoring

 		
 Logging

 		
 Static content

 		
 API

 		
 Django

 		
 Checks

 		
 Signals

 		
 Views

 		
 Flask

 		
 Extension

 		
 Checks

 		
 Signals

 		
 Logging

 		
 JsonLogFormatter

 		
 SafeJSONEncoder

 		
 safer_format_traceback()

 		
 Sanic

 		
 Extension

 		
 Checks

 		
 Version

 		
 get_version()

